Циркадные ритмы — это суточные колебания различных физиологических и биохимических параметров организма, характерные для большинства живых существ, включая и человека. Практически в каждом органе нашего тела есть клетки, обладающие индивидуальным «молекулярным часовым механизмом». Молекулярные часы клеток печени регулируют выработку различных ферментов, необходимых для усвоения питательных веществ. Первостепенную роль в настройке этих часов играет режим питания. Недавнее исследование ученых из Института Солка позволяет предположить, что эта настройка, по крайней мере, частично происходит с помощью аденозинмонофосфат-активируемой протеинкиназы (AMPK), реагирующей на снижение уровня аденозинтрифосфата — главного энергоносителя клетки.
Размышляли ли вы когда-нибудь о том, почему мы обычно спим ночью, а работаем днем? Почему днем уже через 3–4 часа после последнего приема пищи нас снова начинает одолевать голод, а ночью можно спать 8–10 часов подряд, не просыпаясь, чтобы подкрепиться? Почему после быстрого пересечения нескольких часовых поясов на самолете мы нередко страдаем бессонницей и нарушением пищеварения? На сегодняшний день известно, что ответ на все эти «почему» кроется в циркадных ритмах — суточных колебаниях активности органов нашего тела.
В конце прошлого века ученые выяснили, что в мозгу млекопитающих есть биологический «часовой механизм», координирующий работу всего организма. Если точнее, часы эти находятся в супрахиазматическом ядре (СХЯ) гипоталамуса. СХЯ получает информацию об освещенности от специальных рецепторов, расположенных на сетчатке глаза, и посылает соответствующие сигналы другим органам с помощью гормонов и нервных импульсов. Дальше — еще интереснее: оказывается, что некоторые клетки СХЯ, а также клетки многих других органов обладают индивидуальными молекулярными часами. «Шестеренками» в этих часах служат транскрипционные факторы, активность которых меняется с течением дня. От активности этих ключевых транскрипционных факторов зависит синтез целого ряда различных белков, что и порождает циркадные ритмы жизнедеятельности отдельных клеток и целых органов. Яркий свет, включенный ранней ночью, способен сдвинуть циркадный ритм, активируя транкрипцию генов PER, которая обычно происходит утром.
Люди, в короткое время пересекающие несколько часовых поясов, а в особенности те, кто вынуждены делать это регулярно, часто страдают нарушением сна и проблемами с пищеварением — так называемым «джетлагом». Причиной джетлага является сбой циркадных ритмов организма. У мышей СХЯ может настроиться на новый режим на следующий же день после смены часового пояса, однако для перенастройки других органов, в особенности печени, требуется около недели. Таким образом происходит временная десинхронизация ритмов отдельных органов, что не может не сказаться на их работе. Частые сбои циркадных ритмов органов пищеварения в конечном счете нередко приводят к нарушению обмена веществ и ожирению. Будем надеяться, что дальнейшее изучение циркадных ритмов поможет найти средство, способное облегчить адаптацию организма к смене часовых поясов.
Ввиду технических проблем, на сегодняшний день молекулярный механизм циркадных ритмов различных органов достаточно детально изучен только у лабораторных крыс и мышей, о которых не раз упоминалось в этой статье. Однако достоверно известно, что устройство молекулярных часов человеческих клеток и клеток грызунов очень схоже, по крайней мере, в случае клеток кожи [6]. Интересно также, что мутация человеческого гена PER2 вызывает очень редкий синдром ранней фазы сна, при котором люди ежедневно просыпаются ранним утром, примерно в 3–5 часов. Чтобы восстановить свои силы в полной мере, такие люди вынуждены ложиться спать тоже очень рано. Все эти факты заставляют предположить, что достаточно сильное сходство между людьми и лабораторными грызунами есть и в регуляции циркадных ритмов печени.
Здесь более подробно, я просто самое общее вставила.